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THE APPLICATION OF THE STATISTICAL THEORY OF EXTREME VALUES
TO GUST-LOAD PROBLEMS

By Harry PrEss

SUMMARY

An analysis is presented which indicates that the statistical
theory of extreme values is applicable to the problems of pre-
dicting the frequenecy of encountering the larger gust loads and
gust velocities for both specific test conditions as well as com-
mercial fransport operations. The extreme-value theory pro-
vides an analytic form for the distributions of maximum values
of gust load and velocity. Mlethods of fitting the distribution
are given along with a method of estimating the reliability of
the predictions.

The theory of extreme values is applied to arailable load data
from commercial transport operations. The resulis indicate
that the estimates of the frequency of encountering the larger
loads are more consistent with the data and more reliable than
those obtained in previous analyses.

INTRODUCTION

In the investigation of the loads imposed on airplanes
due to gusty air, flight measurements of loads and gust
velocities have been used to obtain estimates of the expected
load experience under various operating conditions. For the
problem of designing airplanes for ultimate static failure, the
larger gust velocities are of particular interest, as they are
likely to cause structural damage. Because the larger gust
velocities are infrequent, measurements available from limited
samples of data will generally not extend to the larger and
critical values of gust velocity and load. Consequently, an
important problem in these investigations is the development
of techniques for estimating the probabilities of encounter-
ing these larger values.

Previous analyses of data obtained from gust-load investiga-
tions have utilized the statistical approach and considered
the measurements obtained as random samples for the
conditions studied. In the analysis of records obtained
from investigations with V-G recorders (references 1, 2, and
3), the largest values of the significant variables have been
selected on some convenient and consistent basis. Frequency
distributions of the largest values have been represented
by fitted Pearson type III probability curves. Experience
with the use of curves of this type has indieated, however,
that the estimates of the probabilities of exceeding the larger
and extrapolated values of the variables cannot be con-
sidered reliable. In some cases, there has appeared evidence
that the estimated probabilities of exceeding the larger
values were too low. A further difficulty, resulting from the

arbitrary selection of the curve type, has been the inability
to derive satisfactory methods of measuring the reliability of
extrapolated predictions.

Recent developments in the statistical theory of extreme
values (references 4 to 10) have indicated a somewhat more
rational approach to the problem of predicting the probability
of oceurrence of the extreme values. Insome cases, this new
approach provides a more satisfactory solution to the
statistical problem of the determination of the form of the
distributions of largest values.

values. The present report summarizes some of these
findings, indicates the method of application, and evaluates
their applieability to certain gust-load problems.

In addition, methods are
available for obtaining measures of the reliability of predicted

SYMBOLS.

m number of observation in order from smallest to
largest

N number of observations from which & maximum
is selected

n total number of observations of maximum values

U. effective gust velocity, feet per second

U, true gust velocity, feet per second

An normal-acceleration inerement, g units

V airspeed, miles per hour

L design level eruising speed, miles per hour

Vo airspeed at which maximum acceleration inecre-
ment oceurs on V-G record

z random variable

Lo mih value from lowest of n values of x

Tra_y second largest value of n values of

T largest value of n values of

w(z) probability density funetion of x

W) cumulative probability distribution of z defined
by f: w(x)dx

Fa)=1—T"(a)

w* (x) probability density funetion of maximum values
of =

WH(x) cumulative probability distribution of maximum
values of

FHa)=1—T*(x)
T(x) recurrence period of x, average number of observa-

tions required to equal or exceed given values

of z
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y reduced variable defined by y=a(z—u)

Ynm mth value of n ohservations of ¥

v*(y) probability distribution of reduced variable ¥

V*(y) cumulative probability distribution of reduced
variable ¥

(¢4n)m reduced standard error of mth of n observations
defined by equation (13) . .

2
8 sample estimate of ¢ given by ‘/ z(?f_l_)
1.14
S"=_a - -

standard deviation of mth value of n observations

of z ( G ‘/——)’“)

ayn
) statistical parameter of distribution of extreme
values defined by equation (5)
a statistical parameter of distribution of extreme
values (—Q-U(i(')—=
1— W),
K universe mean value of random variable given by
[ .» z 'w(:z:)d:c
v standard deviation of random variable defined by
© 1/2
' [f {x— ww(x)d x]
T average number of hours per V-G record
Subscripts: .
LLF design limit load factor

maximum value of random variable for specified
sample
A bar is used over symbols to indicate the mean value of n

max

values of a random variable given by 2793 A tilde ~ is used

above a statistical parameter to designate the true universe
value.

BASIC STATISTICAL CONSIDERATIONS .~

In the application of statistical methods to gust-load
problems, the maximum values of such gust variables as
normal acceleration and effective gust velocity obtained
under given conditions have frequently been selected for
analysis. The frequency distribution of the maximum
values obtained from successive sampleés has been utilized to
obtain estimates of the probability of encountering extreme
values. The problem of obtaining estimates of the probability
of encountering the extreme values would be considerably
simplified by the a priori determination of the underlying
distribution of the maximum values of the variables. The
knowledge of the underlying distribution should also greatly
increase the accuracy and reliability of the required estimates.
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Consideration of recent, work in the theory of extreme
values has indicated that this theory would appear applicable
to gust-load problems if the initial distribution of the vari-
ables satisfied certain requirements. The theory of extreme
values indicates that for certain initial distributions a limiting
form exists for the distributions of the maximum values. In
particular, for initial distributions of the L\ponential Lype,
the limiting form of the distribution of maximum valucs has
been found (reference 5) to be a snnplv analytie function,
This case appears applicable to certain phases of gust statis-
tics and will, therefore, be discussed in some detail.

Consider a random variable z having a probability distri-
bution w(x). The variable x is assumed to have no upper
limit; that is, w(z) is greater than zero for all increasing values
of z. The cumulatwe probability distribution fxom bolow
is then given by — - o

X
W= wes (1)
and indicates the probability that a measurement is less than
a given-value of x. Siniilarly, the cumulative probability
distribution from above is defined by

Flz)= f " w()dz @

and indicates the probability that a measurement is g greater
than the given value of x. The probability that a value z is
a maximum of N observations may be obiained from the
product probabilities and is given by

u-’*(x)=n-i-'(x)]~=[ f - w(a:)dx:r @)

A sxmple analytic expression for 1™*(z) is of course not
possible, in general, inasmuch as it depends on the form of
the initial distribution. If N is very large, asymptotie solu-
tions are possible for certain forms of the initial distribution
w(z). In particular, if w(z) is of the exponetial form, it has
been shown (reference 5) that

TW*(z)=e™t**™ )

where u is the expected largest value defined by

Wo=1-5 - - ®
and e is defined by wl
wu

o | ©

The significance of the parameter « is indicated subsequently.
The. distribution of the maximum values of z may be
obtained from equation (4) and is given by

(@)=t T17*(2) = g ot =ems @)
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The distribution of maximum values given by equation
(7) is a two-parameter family of curves with parameters %
and a. The distribution has positive skewness with a modal
value less than the mean.

In order to simplify the foregoing results, the linear trans-
formation defined by

y=a(z—u) (8)

is utilized to transform equation (7) to a simpler form. From
equations (4), (7), and (8}, the following equations are
obtained:

VHy)=T"*a)=¢" 9

and
I

r*y)=e (10)

The distributions of equations (9) and (10) are shown in
figures 1 and 2, respectively. It is noted from figure 2 that
the distribution of equation (10) has one and only one
. maximum at y=0 and, therefore, the mode of the distribution
of largest values given by equation (7) must be equal to u.
For a known distribution, the rate of increase of the maxi-
mum value of a variable with increasing sample size is
specified inasmuch as the average number of observations
required in order to equal or exceed given values of the
variable may be determined. If a function 7(z) is defined
as the average number of maximum values required in order
to equal or exceed given values of x, analysis has indicated
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FIGURE 2.—Probability density funetion #*(y)=¢—¥—¢ ¥ (equetion 10).

that the value of  exceeded in T(x) observations will increase
as a linear function of log, T'(z). The results obtained in
reference 6, page 178, indicate that for large values of z

log, T{x)~alx—u) (11}

(12)

For values of r such that 7'(x)>>10, this relationship is a
sufficiently close approximation for most purposes. This
result indicates that for Iarge values of  the average number
of samples necessary to equal or exceed given values of x
converges toward a simple exponential function of . From
equation (11}, it is also apparent that the derivative of z
with respect to the log, T(x) is & constant and is given by
1/e. The parameter «, thereby, specifies the rate of ip-_
crease of the maximum value of the variable with increasing
sample size. ' '

. or

logie T(x) =0.4343 a(z—w)

RELIABILITY OF PREDICTION

Equation (7) gives the probability distribution function
of maximum values obtained from samples of a random
variable with a specified type of initial distribution. A
sample of maximum values may then be used to obtain
estimates of parameters of the population of maximum
values. It would be expected, however, that successive
samples from the same population will indieate some dif-
ferences in parameter estimates due to chance, the magnitude
of the differences depending on the sample size. In practice,
the parameters of the population are seldom known and
sample estimates must be used. Methods have been devel-
oped for measuring the reliability of sample estimates by
indicating a range within which, for a given probability level,
the population value can be expected to lie. (See, for
example, reference 11.)

A simple and rapid method of indicating the reliability of
sample estimates of the extreme-value distribution function
called “control curves” has been derived by Gumbel in ref-
erences 8 and 9. These control curves provide a measure,
for a given probability level, of the range within which the
true population value may be expected. Kimball in ref-
erence 10 has suggested a more precise, though considerably
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more complex, method of obtaining confidence limits for the
distribution of extreme values. In the interest of simplicity,
the present discussion will be restricted to the method given
by Gumbel.

The method of obtaining control curves derived by Gumbel
depends essentially on the determination of control intervals
at discrete points along the distribution by the utilization
of the properties of the distribution of the mth , values.
Within the range 0.1<{W*(2)<{0.9, the distribution of
the mth values of a continuous variable having moderate
skew distribution and possessing a mode is asymptotically

normal around the most probable mth value (reference 5)

with a standard error (¢ +/n) . given by:

VT @ =T )]
w* (2 m)

(‘Tﬁ)m

The function (c+yn)m is hereinafter called the “reduced
standard error’”’ and is shown as a function of F*(z,) and ¥

L

58 8/ .72 63 54 .46

s

F ~(-" m)
.38
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in figure 3. A horizontal interval around the true mth
value given by

Em_sm<im<im+sm (14)
where S, is defined by
_ (0' \,ﬁ)_m .
Sm—"‘_‘f—“’ (15)

a\n

gives a probability of about 0.68 that the mth value in a
saraple of n observed maximum values will lic in the enclosed
interval. Similarly, the interval 7,425, has a probability
of about 0.95 of enclosing the mth value from a sample of n
observed maximum values.

In order to obtain a control interval at the larger values, a
fundamental property of the distribution of maximum values
may be utilized. The most probable largest value of n
maximum values has been shown (reference 4) to have a
distribution of the same form as the distribution of the »
meaximum values with the origin shifted to the right by a
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FiGurE 3.—Reduced standard error for mth values,
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distance equal to the log,n and with the standard deviation
unchanged. Consideration of the probability distributions
of extreme values indicates that an interval around the most
probable largest value having a probability of about 0.68
is given by

Y= S, <F <%+ Sx (16)
where
s, =114 a7
[+4

Similarly, for a probability level of 0.95, the control interval
2.97

around the most probable largest value is given by Tx £

Since the control interval around the most probable largest
value does not depend upon the number of observations n,
Gumbel has suggested that a control interval of equal width
may be extended along the extrapolated portion of the curve.

In order to fill the gap in the control intervals for those
values not near the median nor the extreme value, the fol-
lowing equation was obtained by Gumbel in reference 9,
page 11, for the control interval around the most probable
penultimate value:

fiﬁn—l_ ﬂ—l<§n—1<EB—I+SH—1 (18)
where S,_, Is an approximation given by

S, = 0.1542
a (1—-—)
n

The control curves defined by equations (18) and (19) have
a probability level of 0.68. For 2 probability level of 0.95,
the numerator of equation (19) becomes 1.73 instead of the
value of 0.754.

Inasmuch as the foregoing method allows the determina-
tion of control intervals around the sample distribution at
discrete points along the distribution, fairing a smooth curve
through the points is necessary to obtain a continuous
control curve.

Closely related to the control intervals is the problem of
the significance of observed differences between the distribu-
tions of samples of data. In the analysis of gust-load data,
it is frequently required to determine whether the differences
in probabilities of occurrence of extreme or critical values
between two samples are significant. The following pro-
cedure based on the control curves presented herein is sug-
gested as a test of significant differences:

(1) Obtain the control intervals with a probability of 0.95
for the two samples at the value of x at which the comparison
is to be made.

(2) If each of the control intervals does not enclose the
probability value obtained from the other sample, the ob-
served differences may be considered significant.

(19)

(8) If either or both control intervals do enclose the value
obtained from the other sample, the differences cannot be con-
sidered real and may be attributed to sampling fluctuations.

Although the foregoing test for significant differences
cannot be considered rigorous, it would appear to be a
reasonable test designed in accordance with the levels of
significance commonly used in statistical tests.

DETERMINATION OF PARAMETERS

The preceding analysis has presented & basic distribution

for fitting distributions of maximum values provided that the

initial distribution is of the simple exponential type. The
process of fitting the distribution of extreme values to
observed frequency distributions requires the estimation of
the parameters ¥ end « from the sample data. Several
methods are available for the determination of the parameters.
The accuracy with which the parameters can be estimated
depends upon the number and accuracy of observations
available. In practice, & minimum of about twenty-five
observations has been found generally to be required.

For large samples of data, n>>75, the relations obtained
for the parameters from the method of moments have
yielded satisfactory results. The method of moments gives
the following asymptotic relations for the required param-
eters (reference 5):

Y=p—— - (20)
1 _ -\"Ecr
P @1)

where ¢ is Euler's number and equals 0.5772 and p and o

are the mean and standard deviation, respectively, of the . _

universe distribution of maximum values. If equations (20}
and (21) are assumed to be true when the parameter values
are replaced by their respective sample estimates where p
is estimated by Z and o is estimated by s, the following
equations are obtained: .

u=7—= (22)
[+4 . .
and
1 _-\,IES
a (23)

For samples of data, estimates of the values of 4 and a may
be determined from equations (22) and (23). The values
of the parameters obtained for u and « are then utilized with
the transformation equation (8). For given values of z,
equation (8) gives “equivalent values” of y {values of y
having the same probability of being exceeded as the given
value of z). The probabilities that a value of ¥ and the
associated value of « will be exceeded may then be obtained
simply from table L.

715 .
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For smaller samples, more precise methods. of estimating
the parameters are generally required in order to obtain
satisfactory representation of the observed cumulative
frequency distribution. One such method involves the
utilization of the transformation equation (8).
values of # may be transformed to values of ¥ by equating
the observed points of the cumulative frequency distribution
with the distribution of F*(y). The principle of least squares
may then be applied to arrive at estimates of the required
parameters in equation (8). The two normal equations
that are obtained from the principle of least squares are

22 _ 42y

p —'u,+na (24)
Zzy_ 2y  Zy? _
n oty +na (25)

and may be solved simultaneously. Gumbel (reference 9)
has suggested a simplification of the calculation by obtaining
from equations (24) and (25) the following equations, in
terms of the sample estimates:

syt
T=u+ a (26)
= o

For very large samples, ¥ approaches 0.5772, Euler’s number,
and (s,)® approaches #%/6; these values are the same as
those obtained from the method of moments.

In the analysis of small samples, the procedure to be fol-
lowed in determining equivalent values of y for each of the
observed values of z requires the enumeration of the observa-
tions in order of size from smallest to largest. For given

-+

. — 1 . .
values of z, the ratio of n—’:—— gives the proportion of

observations equal to or greater than the given value. This
ratio, sometimes called the recurrence ratio, gives a measure
of the probability F*(z) that the given value of z will be
equaled or exceeded. Table I may be used simply for the
conversion of observed recurrence ratios as observed esti-
mates of F*(y). One observation is lost by this procedure
because the recurrence ratio for the-smallest observation is
equal to 1 and an equivalent, value of ¢ cannot be determined.
The loss of the smallest value is of little consequence
because the principal interest lies with: the other end of the
distribution. i ’

The values of the parameters obtained by the use of

equations (26) and (27) can then be used with the trans-

formation equation (8) to obtain the probability distribution
in the same manner as previously indicated for the case of
large samples. '

Observed.
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In order to illustrate the application of the foregoing
methods to gust-load data, two examples are sclected and
the methods of calculation indicated for the case of both the
large and small samples.

Example 1.—Gust-velocity measurements were available
for 485 traverses of thunderstorms from the 1946 operations
of the G. S. Weather Burcau Thunderstorm Project. The
frequency distribution of the maximum values of gust veloe-
ity per traverse is shown in table II. The relations obtained
from the method of moments, equations (22) and (23), arc
used to determine the values of the parameters u and « as
indicated in the tuble. By utilizing the values of the param-
eters, the transformation equation given by

_ U,—12.8370
=T 4.8263

is obtained. For given values of U, transformed or cquiva-
lent values of ¥ are obtained. Table II also indicates the
equivalent values of y for given values of 7, from 2 to 48
feet per second. The associated probabilities of exceeding
the indicated values of U, obtained from table I, are also
shown. Figure 4 illustrates the fitted extreme-value proba-
bility distribution along with the cumulative-data points.

Control intervals for 68-percent and 95-percent probability
levels were determined by means of the relations given by
equations (13) to (19) and the results oblained are shown in
table III. The control intervals were then used to obtain
the faired control curves shown in figure 4.

Example 2.—Records obtained during recent operations
of a modern transport airplane were selected for the second
example. Twenty-six V-G records, cach representing roughly
250 hours of flight operation, were available for a particular
airline operator and route. The twenty-six maximum
accelerations obtained from the records are given in table
IV. The necessary operations in the evaluation of the
parameters # and « are also indicated in the table. The

values of the parameters obtained give the following rela-

tion for the transformation equation:

__An—0.8674
o ¥="0.2874

The transformation equation and table I were then used Lo
obtain the probabilitics of exceeding given values of An,
and the results obtained are shown in the table. The proba-
bilities of exceeding given values of An along with the
cumulative data points are shown in figure 5.

The relations for the control intervals given by cquations
(13) to(19) were used to obtain the 68-percent and 95-percent
control . intervals for several values of F*(An) and the
results obtained are shown in table V. The coniinuous
control curves obtained by fairing are shown. in figure 5.
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FIGURE 4.—Probability that the maximum value of U, per traverse will exceed indicated value; 1946 U, 8. Weather Bureau Thunderstorm Project dats; example 1,
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APPLICATION AND RESULTS

The fundamental variables generally considered in gust-
load investigations include: the effective gust velocity U,
the normal-acceleration inerement An, the true gust velocity
U, and airspeed V. In order to determine whether the
distribution of extreme values is applicable to distributions
of maximum values, consideration of the initial distributions
of the variables is required. The available data on the
distribution of the aforementioned variables have con-
sequently been examined.

Distributions of effective gust velocity obtained under a
variety of operating conditions Kave been reported inreference
12. At the present time, however, the only extensive dis-
tributions of gust variables have been obtained in cloud
flight from the operations of the U. S. Weather Bureau
Thunderstorm Project (referemce 13) and the NACA air-
plane investigations of reference 14. The relative frequency
distributions of ¥7,, An, and U, obtained from these In-
vestigations are presented in figures 6, 7, and 8, respectively.

Extreme-value distributions were fitted to distributions of
maximum values of An available from V-G records, in order
to compare the results obtained by the use of the extreme-
value theory with those obtained in previous analysis of
V-G data. Thirteen sets of records were available for
analysis although six of these had only 11 to 19 records each.
The remaining seven sets had more than 25 records with

14
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(a) 1946 Thunderstorm Project data. Total number of observations, 27,486.
FrGuvRE 6.—Distribution of effective gust velocity T..
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one exception, for which only 24 records were available.

One of these seven sets was discarded because during one

flight a hurricane was encountered which resulted in an
unusually large acceleration. This unusual occurrence
appears to preclude a simple statistical treatment of the
data for this set. '

Extreme-value distributions were fitted to the six sets of
acceleration inerements in accordance with the methods
previously outlined. The average miles of flight required to
exceed given values of acceleration increment were determined
by using the relation '

Mileage= 0'2} Lr

where P is the probability that a given maximum value for a

record will exceed the given value, = is the average flight

hours per record, and the airplane is assumed to fly at an
average speed of 0.877.

As a basis of evaluation of the results obtained, the total
miles of flight represented by each set of data are compared
with the estimated number of miles (obtained from the

probability curves) required to exceed the largest value of

acceleration increment actually measured in each set.
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(b) 17 Thunderstorm Project data. Total number of observations, 22,960.
FIGURE 6.—Continued.
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Figure 9 (a) presents the results obfained for the six sets of
V-G data. The straight line shown in the figure indicates
equality between predicted and actual mileage. For pur-
poses of comparison, a similar plot is shown in figure 9 (b)
for the same samples of data but with the predieted mileage
values obtained by means of fitting Pearson type 111 prob-
ability curves to the distributions of maximum aceeleration
increments.

Figure 10 presents a comparison of the average life to
limit load factor as obtained by using extreme-value and
Pearson type III distributions for the six sets of data.
Inasmuch as the estimates arc generally extrapolations, a
measure of the degree of extrapolation, the ratio of the
maximum acceleration inerement to the limit aceeleration
inerement, is also given for each sample in the figure.

In addition to the application of the extreme-value distri-
bution to distributions of maximum values of An from V-G
records, some efforts have been made to apply this distribu-
tion to the observed distributions of maximum values of
U, and V., obtained from V-G records. Although the
results obtained appear indicative, they do not appear to
warrant. presentation in detail at this time.
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DISCUSSION

The foregoing results have indicated that the distribution
of extreme values given by equation (7) is the limiting form for
distributions of maximum values where the maximum values
are selected from large samples from an initial distribution of
the exponential type. Methods have been presented for the
fitting of extreme-value distributions. The methods require
the estimation of only the first two moments ‘of the distribu-
tion and may be applied simply and rapidly. Mlethods have
also been presented which allow the estimation of the relia-
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bility of the predicted probabilities of exceeding the extreme
values. It would appear, therefore, that, if applicable, the
use of distribution of extreme values for analysis of gust
loads would offer significant advantages.

In order to determine whether the distribution of extreme
values is applicable to gust-load variables, the available
distributions have been examined. Distributions of U,
are available for a wide variety of test conditions covering
turbulence within clear air, stratus clouds, eumulus clouds,
thunderstorm clouds, and sreas of radar echo. The avail-
able data, although admittedly limited, nevertheless indicate
that for each of the test conditions the distribution of effective
gust velocity appears of the exponential type with variations
in average spacing between gusts and variations in the

standard deviations for the different distributions. Con-

sideration of the most extensive distributions of U7, shownin
figure 6 indicates that the exponential distributions shown
by the fitted straight line are good representations of. the
data. Therefore, the distribution of extreme values would
appear to apply to the effective gust velocity for given test
conditions. _

The available distributions of An have been obtained,
largely, under test flight conditions in which the airspeeds
have been kept constant or at least restricted. The linear
relation between U7, and An in the sharp-edge gust relation
would, consequently, be expected to yield the same form for
the distribution of U, and an. The distributions of An
shown in figure 7 substantiate the expectation that the
form of the distributions of An is the same asg the distribu- .
tions of U, of figure 6. It may be concluded that for test
flights at constant speed at least the distribution of An would
remain in the exponential form and the distribution of ex-
treme values would be applicable.

The available evidence as indicated by figure 8 gppears to
indicate that the distribution of U7, also follows a simple
exponential distribution. The distribution of extreme values
may, therefore, also be applied to distributions of maximum
values of U,. '
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(a) 1946 Thunderstorm Project data. Total number of
observations, 6,715.

16 24 32 40 48 56 64 72 8
True gust velocity, U, fos

(b) 1947 Thunderstorm Project data. Total number of
ohservations, 1,816.

6 24 32 40 48 M.

True gust velocity, Uy, fos

(e} Data from XC-33 airplane investigations during 1941
and 1942. Total number of observations, 1,249,

Ficurk 8.—Distribution of true gust veloeity Ui,

5 64 7284
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The question of the applicability of the extreme-value
distribution to the maximum values of U, obtained from
V-G records from commercial operations arises since these
records generally cover a wide variety of operating and
weather conditions. Although the available data, in some
cases, appear to indicate that the distributions of I7, are of
the exponential form, they do not extend to sufficiently high
valuestobeconclusive. Availableinformation on commercial-
transport gust experience and on the frequency distribu-
tions of U7, for various weather conditions indicates that the
larger values encountered in commercial operations result
largely from flight through thunderstorms and convective
clouds. On the basis, then, that the distribution of gusts in
convective clouds is exponential, it seems reasonable to
expect that the distribution of U, in commercial operations
should have an exponential distribution at least for the larger
values of gust velocity. Application of the distribution of
extreme values would seem reasonable, therefore, to the dis-
tribution of maximum values of U, obtained from V-G
records. _

In connection with the possible application of the distribu-
tion of extreme values to maximum values of acceleration
increment obtained from V-G records of commereial trans-
port operations, the question of the airspeed operating prac-
tice may be of some importance. Apparently, a systematic
variation of airspeed &s a function of gustiness could con-
ceivably cause an appreciable departure from the exponential
form in the distribution of An even at the larger values.
Little evidence is available, however, to indicate that such
a systematic variation exists in practice. On the assump-
tion, then, that operating speeds in areas of moderate to
severe turbulence are largely confined to a mnarrow speed
range for a given airplane or are independent of the intensity
of the turbulence, the application of the distribution to the
maximum vealues of acceleration increment is reasonable.

Consideration has also been given to the applicability of
the extreme-value distribution to maximum vealues of air-
speed obtained from V-G records. Little information is
available, however, concerning the speed-time distribution
of airspeed. Several attempts were made, consequently, to
fit observed distributions by using the distribution of ex-
treme values. The results have indicated that the observed
distributions of 17 are frequently skewed negatively as
compared with the positive skew of the distribution of
extreme values. As a result, the agreement between the
observed data and the distribution of extreme values was
poor. The limited information available on the speed-time
distribution of airspeed has further indicated that the dis-
tribution of airspeeds follows no simple exponential form
and depends largely on operational practice. The distribu-
tion function of equation (7) would, therefore, appear not
to be applicable to distributions of maximum values of
airspeed.

Another variable frequently studied in gust-load investiga-
tions is the airspeed at which the maximum acceleration on a
V-G record is encountered. By definition, this variable
does not represent maximum values of airspeed and, as a

result, no initial distribution that is directly related to this
variable is apparent. Available distributions of 17, have
been examined, however, and the results indicated that the
distribution of extreme values of equation (7) is not appli-
cable to distributions of these data.

It has been indicated that the distribution of extreme
values of equation (7) is a rational distribution form for

purposes of fitting distributions of maximum values of An,

U,, and U, when the maximums are selected from a large
number of observations. The need remains for indicating
that the application of this distribution yields accurate
predictions. The verification of statistical techniques of
this type requires huge masses of data.
not available to enable a complete answer to this question.
Available data may be used, however, to compare the
estimates obtained with those obtained by the methods
commonly used in the analysis of V-G records.

The comparison shown in figure 9(a) between the estimated
miles to exceed the highest observed value of An based on
extreme-value methods and the actual miles flown indicates
that the agreement is extremely good. In only one case is
any appreciable difference noted and in this ease the actual
mileage is about twice the estimated mileage. The same
comparison between the estimated miles to equal or exceed
the maximum values obtained by Pearson type III curves
and the actual miles flown is shown in figure 9 (b). The figure
indicates appreciably more scatter with the predicted miles
always greater than the actual miles with the ratio of the pre-
dicted to actual miles in two casesabout 3 to 1. This tendeney

toward overestimation of miles to exceed given acceleration-

increment values is unconservative and may be misleading.
On this basis, the extreme-value distribution apparently
yields more reliable estimates of the frequency of encounter-
ing the larger values.

Since the miles required to exceed limit load factor is of
particular concern, the comparison shown in figure 10 of the
estimates to exceed limit Ioad by the extreme-value and
Pearson type III curves becomes of interest. Consideration
of figure 10 indicates that the Pearson curves in every case

Sufficient data are -

yield larger mileage estimates. The differences between the

estimates at limit load factor vary appreciably as indicated
by the ratio of the mileages which vary from about 1.3 to
60. Consideration of the ratios of the maximum values of
An observed to limit load factor for each set of data in-
dicates that the magnitude of the differences between the

results of the two methods increases with the degree of extra-

polation required to reach limit load factor.

In summary, then, the foregoing comparisons have in-

dicated that, as compared with previous methods of analysis,
extreme-value methods yield results more consistent with
the data at the largest values. The differences between the
estimates are considerably amplified when comparisons are
made at extrapolated portions of the distributions. In view
of this evidence and the rational foundation for the extreme-
value distribution presented previously, the use of this

distribution would generally be expected to provide more

reliasble estimates.
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In the practical application of extreme-value methods to
the analysis of V-G records, it should be noted that the
extreme-value distribution of the maximum values of An may
be used, in econjunection with the methods of reference 1, to
predict the velocity-acceleration or V-N envelope for a given
airplane. It has also been suggested that the determination
of the V-N envelope should be made by analysis of the
accelerations by speed bracket. In this connection, the use
of extreme-value methods would also seem proper provided
that for each record a large number of accelerations are ex-
perienced within each of the speed brackets chosen.

Another problem.encountered, in practice, is that estimates
of the frequency distribution are frequently required for
very limited samples, sometimes as few as ten records. In
order to increase the sample size, the practice has been to
use both the maximum positive and maximum negative
acceleration inerements from each record; the sample size is
thereby doubled. Although this practice departs somewhat
from the extreme-value theory, an analysis of available data
indicated that the use of two maximums per record for the
larger samples had only a minor effect on the estimates
obtained. The use of two maximums per record would
appear, therefore, to offer a uséful basis for increasing sample
size, particularly for very limited samples.

CONCLUDING REMARKS

An analysis of gust-load data by the use of the statistical
theory of extreme values has indicated the following results:

1. The theory of extreme. values gives a rational form for
the distribution of maximum values that appears applicable
to distributions of maximum values of the effective gust
velocity, true gust velocity, and normal-aceeleration incre-
ment obtained from test flights or commercial transport

2. Simple methods are available for fitting the distribution
of extreme values to samples of data dnd for obtaining con-
trol curves that provide a measure of the reliability of the
estimates of encountering the larger values. A simple and
reasonable, but nonrigorous, method of determining whether
differences between two estimates may be considered sig-
nificant is also presented.

3. The application of the distribution of maximum values
to available V-G data yields estimates of the frequency of
encountering the larger acceleration increments that are
consistent with the available data and appear to be more
reliable than the estimates obtained in previous analyses.

4. Notwithstanding the fact that the methods deseribed
in the present report appear to be applicable, the possibility
must always be kept in mind that, beeause of limitations of
the method, available records, or both, a value may ocecur
that far exceeds the limits of the theoretieal predictions.

LanGLEY AERONAUTICAL LABORATORY,
NaTronaL Apvisory COMMITTEE FOR AERONAUTICS,
Laxerey Fiewp, Va., July 22, 1949.
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TABLE I.—CUMULATIVE PROBABILITY DISTRIBUTION F *(y)=1—e—

¥ () 4 F*() ¥ F¢)] ¥ F*(y)
—2.50 0. 900093 0.15 . 5771 2.80 0. 03900 5.45 0. 004257
—2.45 . 099001 .20 . 5590 2.85 . 03620 5.50 . 004079
—2.40 . 000084 .25 5410 2.90 .03353 5.55 . 003580
—2.35 999972 .30 .5233 2.95 05100 5.60 . 003691
—2.30 .999953 .35 5057 3.00 . 04856 5.65 . 003512
—2.25 999924 .40 L4584 3.05 04625 5.70 - 003341
—2.90 99958 45 4714 3.10 04405 57 . 003178
—2.15 9981 50 L4547 3.15 L0104 5.80 . 003024
—2.10 90972 .55 4384 3.2 . 5.85 . 002536
—2.05 99058 .60 L4221 3.2 . 03303 5.90 . 002735
—2.00 . .65 4067 3.30 . 03621 5.95
-1.95 9901 .70 3014 3.35 03447 6.00 . 002476
—-1.%0 L9988 .75 3765 3.40 03262 6.03 . 002355
—1.85 9983 .80 .3619 3.45 03125 6.10 002241
—1.80 9976 . 3478 3.50 02975 6.15 . 002132
—L.75 9368 .90 3341 3.55 . 02831 6.20 . 002027
~1.70 9958 .85 3207 3.60 . 02605 6.25 . 001923
~L65 5 1.00 3078 3.65 . 02565 6.30 . 001834
—1.60 9929 1.05 .2952 3.70 02442 6.35 001716
—1.55 .0910 116 . 2632 3.7 .023%5 6.40 - 001661
—1.30 9887 1.15 L2 3.80 L0212 6.45 . 001579
—1.45 .9859 L20 . 2601 3.85 .02105 6.50 . 001502
—1.40 9827 125 L2401 3.90 . 6.55 . 001429
—1.35 .9789 130 . 2385 3.95 . 01907 6.60 001359
—~1.30 L9745 1.35 . 4.00 . 01815 6.65 . 00L
—125 9695 1.40 2186 4.05 01727 6.70 .001
—1.20 9633 145 . 2091 410 01643 6.75 . 00117
-115 9575 L 30 - 2000 415 01564 650 001113
~1.10 . 9504 1.55 1912 4.9 01489 6.85 . 001059
~1.05 L9426 1.60 . 4.25 01416 6.90 . 001008
—1.00 L9340 165 L7 430 . 01348 6.95 . 060959

—.95 L9247 170 1670 4.35 .0 7.00 . 000912
—.90 .0145 1.75 1595 4.40 .0 7.05 . 600367
—.85 A 180 L1524 4.45 01161 7.10 . 000825
—.80 . 1.85 L1455 4.50 01106 7.15 . 000785
-7 L8796 190 .1360 4.55 01051 720 . 000747
-7 195 .13% 4.60 01000 7.2 . 000710 -
—.65 8527 2.00 1266 4.65 . 009516 7.30 . 000676 -
—.80 . 205 .18 £70 . 7.35 . 000643
—.55 8233 210 (1153 4.75 . 008614 7.40 . 600611
—.50 8077 215 1100 4.80 - 008196 7-45 - 600581
—.45 7916 2.20 L1049 4 85 - 007798 7.50 000553
—.40 LT750 2.25 £.90 . 007420 7.55 . 000526
—.35 L7531 2.30 00543 £.95 007058 7.60 . 600500
- . T407 235 . 500 . 006716 7.65 . 000476
-.25 L7231 2,40 . 08673 5.05 . 7.70 . 000453
—.20 .7052 2.45 . 510 . 006078 7.75 . 000431
—.15 L6571 250 . 07880 5.15 . 005752 7.80 . 000410
-.10 .6689 2.55 @751l 5.20 7.8 . 000390
—.05 .6505 2.60 Q7158 525 005235 7.90 - 000371

) .6321 2.65 . 06822 530 004950 7.95 . 000353

.05 6137 250 . 06500 5.35 . 004737 800 . 000326

.10 .5954 2.75 .06193 | 540 004507

$Table values are sccurate to =1 in Iast decimel place.
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TABLE II I TABLE IV
SUMMARY OF CALCULATIONS, 1946 U. 8. WEATHER SUMMARY OF CALCULATIONS, V-G DATA
BUREAU THUNDERSTORM PROJECT DATA . .. [Example 2]
[Example 11 =
Serfal
An a—m-+1
- . L t number, | ——— ¥ ¥? Ang
U, [Midpoint| Freqyeney,| Gumaisive)  Belatiie | o | g ot | T
(fps) e I F frequency, F/N
. . (Y 2411 % 1 % ................. 0. 2500
2t04 3 4 485 1.000 12’ 36 ‘g5 3 9231 i, éﬁ 1: 32;; j?&
4t06 5 1 481 . 9918 35 276 .66 4 .8816 - 770 5920 L4358
608 7 brg 470 - 9691 189 1,33 - 5 8462 —.627 .3%31 L4000
810 10 9 48 443 L0134 £32 3,888 .78 6 8077 —. 500 . 2500 .53%
10 to 12 11 62 395 8144 682 7,502 .80 7 7692 —.383 L1407 . 6100
12t0 14 3 58 333 . 8866 754 9,802 -, 8 7308 — 272 L0740 5100
14 10 16 15 55 275 . 5670 825 12,375 : g 6923 —. 164 - 0260 4
16 to 18 17 60 229 4536 1020 17,340 .01 10 . 6538 —.05¢ 0035 . 8281
18 to 20 1¢ 61 160 -8290 158 . 22,021 Y 11 L6154 015 0020 .8281
20 to 22 21 36 89 2041 756 18,878 .08 12 . 5760 .18 .0228 . 9604
221024 2 17 6 1209 301 g "1.00 13 . 5386 257 . 0560 1,
24 to 26 25 i8 46 85 450 11,250 100 14 . 5000 . 368 . 1310 1. 0000
26 t0 28 o7 8 28 05773 216 5, 1.00 15 4615 490 . 2304 L
28 to 30 29 7 2 04124 208 &, 887 1.05 16 L4231 . 508 .8576 1. 1625
30 0 82 31 8 3 02080 186 57 Los 17 . 3810 TR .52 1.1025
32 to 3¢ 33 3 4 01443 % 3,267 .10 18 .3462 . 856 L7827 1.2100
3410 36 35 1 4 -§08247 36 L 1.20 18 3077 1,000 1.0000 14400
36 0 38 37 2 3 186 T4 2,738 1.25 20 L2692 1.160 1.3458 1. 5625
38 to 40 39 1 L1 002062 39 ) 1.30 21 . 2308 1.338 1.7602 16900
- 1.30 22 1023 1. 544 2.3830 1.6000
z 485 L . 7517 136,017 1.36 28 .1538 1.760 3. 2041 1, 8225
S . 1.40 % 1154 2,009 4. 4058 1, 9600
1.65 25 07602 2,526 6.3756 2,7925
1.80 2% 03846 3.239 10. 4011 8. 2400
T | 2.5 13.272 36,8361 29, 6146 .
T
(&’,g) v Fy Derivation of transformatfon equation: L .
0. 9050 ¢ An t5) v FHg) Derivation of transformation equation:
2 —2, 2454 . T = . .- : ¢ units —
i |-rgs0 | o080 U,=15.6227 Frim1,0200
6 —1.4166 L9838
8 —1.0022 L0344 . 0.50 —1,2784 0.0723 $An=0.3202
10 —. 5878 . 8346 1 .60 —. 0304 . 9207
12 — 1734 . 6956 L6 .70 —. 5825 8331 '
14 L2410 L5442 o .80 —.2345 117 2 p.o87
16 .6554 4051 .90 1134 ) «
18 1.0698 5029 {,(118 L4614 . ggg _
20 1.4842 . . . . =0,
22 L8086 | 1302 sy =6.1809 120 vis | Capom ¥=0.500
24 2.3130 . 09427 ¢ 1.30 1. 5052 - 1991 5,=1.1141
2 7273 . 06332 - 1.40 1.8532 1451
28 3. 1417 . 04229 1.50 2,201 1048 10,8674
30 3. 5561 .02814 w=12.8370 1.60 2, 5491 07318
32 3. 9705 . 01869 L7 2, 8670 - 05369 An—0.8874
34 4.3849 01239 1.80 3. 2450 . 03822 -
3 47993 . 008202 ) 1.9 3.5020 .02714 0.2874
38 5.2187 . 005429 U,—12.8370 2.00 3. 9408 . 01925
40 5.6281 . 003590 m—t 2.10 4.2888 . 01363
42 6.0425 . 002373 4.8263 2.20 4. 6367 . 00964
44 6.4569 001568 .
46 6. 8713 . 001637
48 7. 2857 000687
. TABLE V
CALCULATIONS FOR THE DETERMINATION OF
TABLE III . THE CONTROL INTERVALS
CALCULATIONS FOR THE DETERMINATION OF .- [ Exempte 2; £ ~0.2874 |
THE CONTROL INTERVALS 3
[Example I i--=4.8263] Control interval
. ) F*(An}
68 percent 95 percent
Control interval
F(U,) : —
68 percent * 95 percent 516"0'0335 (0.2874) (1.14) =~0.328 (0.2874) (2.97) =0.85¢
1 ) ..
a0, 4.8263) (L. 14) =5, .8263) (2.07) =14, : 2874 (0. 2574 (1.
75 =0:002062 (4.8263) (1. 14) = 5.5020 (4.8263) (2 9_7) 14,3341 %_ 0.0760 (0.2874) (241 78) 06 o oy (0.2574) ﬂgn ) 00 g e
2 _ (4.8263) (0.75) (485) _ (4.8263) (1.73) (485)
185 0.00412¢ BB S - (3.18) (0.2874) (6.32) (0.2874)
_ 0.10 e e 0178 =0.350
(3.16) (4.8263) (6.32) (4.8263) V26 Vo
0.10 —_— =0.6925 —_—" =] 3850 .
V185 . R ' 0.5 @.00) 0.2870 o .o (400 0.5879) _, .
(2.00) (4.526: e (4,00) (4.8263) ‘ % ) ’
0.25 Lo 00) 0,43 S L2 —0.8766 v 2%
Vi85 53 +/485 Vs
0.0 Q40 @829 o @89 (4828 _ 0.50 $:40) Q2874 _ g 419 @88 0870 _ 0y
+/485 V485 . V2




